Artificial intelligence is creating one of the biggest revolution across technology driven application fields. For the finance sector, it offers many opportunities for significant market innovation and yet broad adoption of AI systems heavily relies on our trust in their outputs. Trust in technology is enabled by understanding the rationale behind the predictions made. To this end, the concept of eXplainable AI emerged introducing a suite of techniques attempting to explain to users how complex models arrived at a certain decision. For cross-sectional data classical XAI approaches can lead to valuable insights about the models' inner workings, but these techniques generally cannot cope well with longitudinal data (time series) in the presence of dependence structure and non-stationarity. We here propose a novel XAI technique for deep learning methods which preserves and exploits the natural time ordering of the data.
translated by 谷歌翻译
Remote state estimation of large-scale distributed dynamic processes plays an important role in Industry 4.0 applications. In this paper, we focus on the transmission scheduling problem of a remote estimation system. First, we derive some structural properties of the optimal sensor scheduling policy over fading channels. Then, building on these theoretical guidelines, we develop a structure-enhanced deep reinforcement learning (DRL) framework for optimal scheduling of the system to achieve the minimum overall estimation mean-square error (MSE). In particular, we propose a structure-enhanced action selection method, which tends to select actions that obey the policy structure. This explores the action space more effectively and enhances the learning efficiency of DRL agents. Furthermore, we introduce a structure-enhanced loss function to add penalties to actions that do not follow the policy structure. The new loss function guides the DRL to converge to the optimal policy structure quickly. Our numerical experiments illustrate that the proposed structure-enhanced DRL algorithms can save the training time by 50% and reduce the remote estimation MSE by 10% to 25% when compared to benchmark DRL algorithms. In addition, we show that the derived structural properties exist in a wide range of dynamic scheduling problems that go beyond remote state estimation.
translated by 谷歌翻译
在本文中,我们旨在改善干扰限制的无线网络中超级可靠性和低延迟通信(URLLC)的服务质量(QoS)。为了在通道连贯性时间内获得时间多样性,我们首先提出了一个随机重复方案,该方案随机将干扰能力随机。然后,我们优化了每个数据包的保留插槽数量和重复数量,以最大程度地减少QoS违规概率,该概率定义为无法实现URLLC的用户百分比。我们构建了一个级联的随机边缘图神经网络(REGNN),以表示重复方案并开发一种无模型的无监督学习方法来训练它。我们在对称场景中使用随机几何形状分析了QoS违规概率,并应用基于模型的详尽搜索(ES)方法来找到最佳解决方案。仿真结果表明,在对称方案中,通过模型学习方法和基于模型的ES方法实现的QoS违规概率几乎相同。在更一般的情况下,级联的Regnn在具有不同尺度,网络拓扑,细胞密度和频率重复使用因子的无线网络中很好地概括了。在模型不匹配的情况下,它的表现优于基于模型的ES方法。
translated by 谷歌翻译
多用户多输入多输出(MU-MIMO)系统可用于满足5G和超越网络的高吞吐量要求。基站在上行链路MU-MIMO系统中为许多用户提供服务,从而导致多用户干扰(MUI)。设计用于处理强大MUI的高性能探测器具有挑战性。本文分析了最先进消息传递(MP)检测器中使用高MUI的后验分布近似引起的性能降解。我们开发一个基于图神经网络的框架来微调MP检测器的腔分布,从而改善MP检测器中的后验分布近似。然后,我们提出了两个基于神经网络的新型检测器,它们依赖于期望传播(EP)和贝叶斯平行干扰取消(BPIC),分别称为GEPNET和GPICNET探测器。 GEPNET检测器可最大化检测性能,而GPICNET检测器平衡了性能和复杂性。我们提供了置换量比属性的证明,即使在具有动态变化的用户数量的系统中,也只能对检测器进行一次培训。仿真结果表明,所提出的GEPNET检测器性能在各种配置中接近最大似然性能,而GPICNET检测器将BPIC检测器的多路复用增益加倍。
translated by 谷歌翻译
在无线网络控制系统(WNCSS)对共享无线资源的传输计划文献中,大多数研究工作都集中在部分分布式设置上,即控制器和执行器或传感器和控制器共存。为了克服这一限制,目前的工作考虑了具有分布式工厂,传感器,执行器和控制器的完全分布的WNC,共享了有限数量的频道。为了克服沟通限制,控制器计划传输并生成用于控制的顺序预测命令。使用随机系统理论的元素,我们得出了WNC的足够稳定性条件,该条件在控制和通信系统参数方面均已说明。一旦满足条件,就会至少存在一种固定和确定性的调度政策,可以稳定WNC的所有植物。通过分析和代表WNC的每步成本函数,根据有限的可数值矢量状态,我们将最佳的传输调度问题提出到马尔可夫决策过程问题,并开发基于深入的基于强化的算法,以求解以解决的算法它。数值结果表明,所提出的算法显着优于基准策略。
translated by 谷歌翻译